본문 바로가기

모의고사

[빅데이터분석기사] 모의고사2 (이상치, 소수점데이터 찾기, 소수점데이터처리, 분류(3개set), 독립표본t-test) * 퇴근후딴짓 님의 캐글 문제를 제가 풀어본 결과입니다.* [유형1] 이상치찾기, 소수점데이터 찾고 처리하기(올림/내림/버림) (문제) 주어진 데이터에서 이상치(소수점 나이)를 찾고 올림, 내림, 버림(절사)했을때 3가지 모두 이상치 'age' 평균을 구한 다음 모두 더하여 출력하시오. -> 문제 바로가기(캐글) * 올림/버림/내림 - import numpy as np - 올림 : np.ceil(df['컬럼명']) - 내림 : np.floor(df['컬럼명']) - 버림 : np.trunc(df['컬럼명']) * 소수점 데이터 찾는 방법 : 값 - 내림해서 뺀 값이 0이 아닌 경우 : df['컬럼'] - np.floor(df['컬럼') != 0 (풀이) # 라이브러리 및 데이터 불러오기 import pa.. 더보기
[빅데이터분석기사] 모의고사 1 (이상치, 분류(3개set), 쌍체T표본검정) * 퇴근후딴짓 님의 캐글 문제를 제가 풀어본 결과입니다. * [유형1] 이상치 찾기 -> 문제 바로가기(캐글) (문제) 데이터에서 IQR을 활용해 Fare컬럼의 이상치를 찾고, 이상치 데이터의 여성 수를 구하시오 (풀이) # 라이브러리 및 데이터 불러오기 import pandas as pd df = pd.read_csv("../input/titanic/train.csv") # EDA # print(df.head(3)) # print(df.shape) # print(df.info()) # print(df.isnull().sum()) # IQR 구하기 (IQR = Q3-Q1) # 최대 : Q3 + 1.5*IQR / 최소 : Q1-1.5*IQR Q3 = df['Fare'].quantile(.75) Q1 = d.. 더보기